The Hierarchical Multi-Bank DRAM: A High-Performance Architecture for Memory Integrated with Processors

نویسندگان

  • Tadaaki Yamauchi
  • Lance Hammond
  • Kunle Olukotun
چکیده

A microprocessor integrated with DRAM on the same die has the potential to improve system performance by reducing the memory latency and improving the memory bandwidth. However, a high performance microprocessor will typically send more accesses than the DRAM can handle due to the long cycle time of the embedded DRAM, especially in applications with significant memory requirements. A multi-bank DRAM can hide the long cycle time by allowing the DRAM to process multiple accesses in parallel, but it will incur a significant area penalty and will therefore restrict the density of the embedded DRAM main memory. In this paper, we propose a hierarchical multibank DRAM architecture to achieve high system performance with a minimal area penalty. In this architecture, the independent memory banks are each divided into many semi-independent subbanks that share I/O and decoder resources. A hierarchical multi-bank DRAM with 4 main banks each composed of 32 subbanks occupies approximately the same area as a conventional 4 bank DRAM while performing like a 32 bank one — up to 65% better than a conventional 4 bank DRAM when integrated with a single-chip multiprocessor.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Memory Hierarchies in Intelligent Memories : Energy / Performance Design

Dramatic increase in the number of transistors that can be integrated on a chip, coupled with advances in Merged Logic DRAM (MLD) technology fuels the interest in Processor In Memory (PIM) architectures. A promising use of these architectures is as the intelligent memory system of a workstation or server. In such a system, each memory chip includes many simple processors, each of which is assoc...

متن کامل

A Single Chip Multiprocessor Integrated with High Density DRAM

A microprocessor integrated with DRAM on the same die has the potential to improve system performance by reducing memory latency and improving memory bandwidth. In this paper we evaluate the performance of a single chip multiprocessor integrated with DRAM when the DRAM is organized as on-chip main memory and as on-chip cache. We compare the performance of this architecture with that of a more c...

متن کامل

A Single Chip Multiprocessor Integrated with DRAM

We evaluate the performance of a single chip multiprocessor integrated with DRAM. We compare the performance of this architecture with that of a more conventional chip which only has on-chip SRAM. The DRAM-based architecture with four processors performs an average of 52% faster than the SRAM-based architecture on floating point applications with large working sets. This is performance differen...

متن کامل

A Study of Leveraging Memory Level Parallelism for DRAM System on Multi-Core Architecture

DRAM system has been more and more critical on modern multi-core architecture where the Moore’s law has been made effect on increasing the number of cores integrated in a processor chip. The performance of DRAM system is usually measured in term of bandwidth and latency, which are regarded as inherently depending on Row Buffer Hit Rate (RBHR) according to previous studies. In this paper, we fin...

متن کامل

Energy/Performance Design of Memory Hierarchies for Processor-in-Memory Chips

Merging processors and memory into a single chip has the well-known benefits of allowing high-bandwidth and lowlatency communication between processor and memory, and reducing energy consumption. As a result, many different systems based on what has been called Processor In Memory (PIM) architectures have been proposed [14, 2, 6, 7, 9, 11, 12, 13, 15, 16, 18]. Recent advances in technology [3, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997